Pre-class Warm-up!!!

1. $\frac{d}{d x} \sin 2 x^{2}=$
a. $\cos 4 x$
b. $2 x^{2} \sin 2 x^{2}$
C. $4 x \cos 2 x^{2}$
d. $2 x^{2} \cos 4 x$
e. None of the above
2. To do question 1, we use:
a. a calculator
b. Leibniz' rule
c. the chain rule
d. guess work
e. None of the above
2.5 The chain rule and other properties of the derivative.

Mostly this section is about the chain rule, and the most important thing is what it looks like, why you might expect it to be this way, and how to do the HW questions

$$
\begin{aligned}
& u=u(x) \quad y=y(u) \\
& \left.\frac{d y}{d x}\right|_{a}=\left.\left.\frac{d y}{d u}\right|_{u(a)} \cdot \frac{d u}{d x}\right|_{a}
\end{aligned}
$$

Review of the 1-variable case.
Informally the chain rule says $d y / d x=(d y / d u)(d u / d x)$
when y is a function of u and u a function of x.
E.g. $u=x^{\wedge} 2+x, y=2 u^{\wedge} 2$

- $y=2\left(x^{\wedge} 2+x\right)^{\wedge} 2=2 x^{\wedge} 4+4 x^{\wedge} 3+2 x^{\wedge} 2$
- $d y / d x=8 x^{\wedge} 3+12 x^{\wedge} 2+4 x$
- $\quad d y / d u=4 u \quad d u / d x=2 x+1$
- $d y / d x=(4 u)(2 x+1)=4\left(x^{\wedge} 2+x\right)(2 x+1)$ $=8 x^{\wedge} 3+12 x^{\wedge} 2+4 x$

Or: $\left(f^{\circ} g\right)^{\prime}(a)=f^{\prime}(g(a)) g^{\prime}(a)$

Special case of the chain rule
Let $c: R->R \wedge 3$ and $f: R \wedge 3 \rightarrow R$ be (x, y, z),

$$
\begin{aligned}
& c(t)=(t \wedge 2,2 t, \sin t), f(x, y, z)=2 x+y z \wedge 2 \\
& f \circ c: \mathbb{R} \longrightarrow \mathbb{R}
\end{aligned}
$$

Find $d f / d t$
Question: was it right to use d rather than ∂ just now?
a. Yes
b. No

It's also convect to write ∂ always.

The chain rule says

$$
\left.\frac{d f}{d t}\right|_{a}=\left.\frac{\partial f}{\partial x} \frac{\partial x}{\partial t}\right|_{a}+\frac{\partial f}{\partial y}\left|\frac{\partial y}{\partial t}\right|_{a}+\left.\frac{\partial f}{\partial z} \frac{\partial z}{\partial t}\right|_{a}
$$

We should really e valuate there derivatives appropriately.

$$
\begin{aligned}
\frac{d f}{d t} & =2 \cdot 2 t+z^{2} \cdot 2+y \cos t \\
& =4 t+2 \sin ^{2} t+2 t \cos t
\end{aligned}
$$

Notice: the derivative matrices of f and c are

$$
\begin{aligned}
& D f=\left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right], D c=\left[\begin{array}{l}
\frac{\partial c_{1}}{\partial t} \\
\frac{\partial c_{2}}{\partial t} \\
\frac{\partial c_{3}}{\partial t}
\end{array}\right] \\
& \text { and } \frac{d f}{d t}=D f \cdot D c \\
& \text { matrix }
\end{aligned}
$$

multiplication.

The chain rule
Theorem 11. Let $g: R \wedge n \rightarrow R \wedge m$ and $f: R \wedge m->R \wedge p$ be differentiable. Then $f^{\circ} \mathrm{g}$ is differentiable and maxix malt. $D\left(f^{\circ} \mathrm{g}\right)(\mathrm{a})=\operatorname{Df}(\mathrm{g}(\mathrm{a}))^{\circ} \mathrm{Dg}(\mathrm{a})=$ composition

$$
\mathbb{R}^{n} \xrightarrow{g} \mathbb{R}^{m} \xrightarrow{\perp} \mathbb{R}^{p}
$$

Idea of proof: we go to the definition of the derivative and show that

$$
\begin{aligned}
& \lim _{x \rightarrow a} \frac{\|(f \circ g)(x)-(f \circ g)(a)-D f(g(a)) \circ D g(a)(x-a)\|}{\|x-a\|} \\
& \rightarrow 0
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\| f g(x)-f g(a)-\operatorname{Df}(g(a)))^{\circ} \operatorname{Dg}(a)(x-a) \|}{\|x-a\|} \\
& =\frac{\| f g(x)-f g(a)-\operatorname{Df}(g(a))(g(x)-g(a))}{+D f(g(a))(g(x)-g(a)-\operatorname{Dg(a)(x-a)\| }}\|x x-a\| \\
& \leq \frac{\| f g(x)-f g(a)-\operatorname{Df(g(a)(g(x)-g(a))\| }}{\|x-a\|} \\
& +\frac{\|D f(g(a))(g(x)-g(a))-D g(a)(x-a)\|}{\|x-a\|}
\end{aligned}
$$

etc.

Other properties of the derivative

They may all be proved by going to the definition of the derivative and showing that the given expression for the derivative satisfies the definition.

Theorem 10 (i) and (ii)
Let $f, g: R \wedge n \rightarrow R \wedge m$ be differentiable and let c, d be scalars. Then $\mathrm{cf}+\mathrm{dg}$ is differentiable and $D(c f+d g)(a)=c D f(a)+d \operatorname{Dg}(a)$

D is linear.

Example: $D\left(2 x+3 x^{2}\right)=2 D(x)+3 D\left(x^{2}\right)$

Parts (iii) and (if) of Theorem 10 do not have much use because they apply to differentiable functions $f, g: R \wedge n \rightarrow R$
(iii) The product of is differentiable and $D(f g)(a)=g(a) D f(a)+D g(a) f(a)$
(iv) If g is never zero then f / g is differentiable and

$$
D(f / g)(a)=g(a) D f(a)-f(a) D g(a) /[g(a)] \wedge 2
$$

Exercise 1. If $f: R \wedge n->R$ is differentiable, prove that $x->f \wedge 2(x)+2 f(x)$ is differentiable and find its derivative in terms of Bf.

Most questions get you to calculate $\mathrm{D}\left(\mathrm{f}^{\circ} \mathrm{g}\right)$ in particular cases, and they can mostly be done by first computing $f^{\circ} g$ and then finding the derivative without the chain rule.

$$
\begin{aligned}
& \text { Example } \\
& \begin{array}{l}
f(u, v)=\left(u-v, 2 v^{\wedge} 2\right) \\
g(x, y, z)=\left(x y+z, x^{\wedge} 2+y^{\wedge} 2+z^{\wedge} 2\right)
\end{array} \quad f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2} \\
& \hline \mathbb{R}^{2}
\end{aligned}
$$

Find $D\left(f^{\circ} g\right)(1,0,1)$

Example (like Ex 33):
Let $c=c(t): R->R \wedge 2$ have $c(1)=(3,4)$ and $c^{\prime}(1)=(1,2)$.
Let $f=f(x, y): R \wedge 2->R$ have $\partial f / \partial x(3,4)=-1$. Suppose that $\mathrm{d} / \mathrm{dtt}\left(\mathrm{f}^{\circ} \mathrm{C}\right)=5 \mathrm{t}$.
Find $\partial f / \partial y(3,4)$.
Solution. We use $\frac{d f}{d t}(1)=\frac{\partial f}{\partial x}(c(1))_{d t}^{d x}(1)$

$$
\begin{aligned}
& =\frac{\partial f}{\partial x}(3,4) \frac{d x}{d t}(1)+\frac{\partial f}{\partial y}(3,4) \frac{d y}{\partial t}(1) \frac{d y}{d t}(1) \\
& =(-1)+1+\frac{\partial f}{\partial y}(3,4) \cdot 2 \\
& =5 t=5 \\
& -1+2 \frac{\partial f}{\partial y}(3,4)=5, \quad \frac{\partial f}{\partial y}(3,4)=3
\end{aligned}
$$

Why might we expect the chain rule to be true?

Same for go
$D(g \circ f)$ gives the best linear approx.

To get the best approximation to $g^{\circ} f$ we compose the best approximation for f with the best approximation for g.

